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SUMMARY

We develop a method for construction of arrays which are nearly orthogonal, in the sense that each col-
umn is orthogonal to a large proportion of the other columns, and which are convertible to fully orthogonal
arrays via a mapping of the symbols in each column to a possibly smaller set of symbols. These arrays can
be useful in computer experiments as designs which accommodate a large number of factors and enjoy
attractive space-filling properties. Our construction allows both the mappable nearly orthogonal array and
the consequent fully orthogonal array to be either symmetric or asymmetric. Resolvable orthogonal arrays
play a key role in the construction.

Some key words: Computer experiment; Difference scheme; Resolvable array; Space-filling design.

1. INTRODUCTION

Ever since the seminal work of Rao (1947), orthogonal arrays have become so prominent in the design
literature as to form the backbone of designs for multifactor experiments. An N × m array with symbols
0, 1, . . . , s − 1 is an orthogonal array of strength two if in every two columns the s2 ordered pairs of
symbols occur with the same frequency. We write OA(N ; sm) for such an array; a more general definition
appears in § 2. When used in computer experiments (Santner et al., 2003), orthogonal arrays provide an
easy construction of an attractive class of space-filling designs (Owen, 1992; Tang, 1993). Dey & Mukerjee
(1999) reviewed the construction and optimality of orthogonal arrays as fractional factorial designs. For a
comprehensive treatment of these arrays, see Hedayat et al. (1999).

Motivated by computer experiments, in this paper we introduce and construct a class of arrays, called
mappable nearly orthogonal arrays. Such an array is nearly orthogonal in the sense that each column is
orthogonal to a large proportion of the other columns, and the array becomes a fully orthogonal array when
its symbols are collapsed into a smaller set of symbols. To see the benefits of using such an array in com-
puter experiments, we provide an illustrative example. An OA(81; 910) allows the construction of a design of
81 runs for 10 factors that achieves a stratification on a 9 × 9 grid in all two-dimensions. If an OA(81; 340)
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958 R. MUKERJEE, F. SUN AND B. TANG

is used, one can also construct a design of 81 runs that can accommodate 40 factors but achieves a stratifica-
tion only on a coarser 3 × 3 grid in all two-dimensions. A mappable nearly orthogonal array constructible
from the theory of this paper has 81 runs and can accommodate 40 factors each of 9 symbols. This design
is able to achieve a stratification on a 9 × 9 grid in 720 out of all 780 two-dimensions and on a 3 × 3 grid in
the remaining 60 two-dimensions. Thus it enjoys much better space-filling properties than an OA(81; 340),
while at the same time accommodating a considerably larger number of factors than an OA(81; 910).

Popular choices of models for computer experiments are those based on Gaussian processes, and,
correspondingly, space-filling designs have been widely accepted as appropriate designs (Santner et al.,
2003). One can evaluate the uniformity of a design using distance criteria (Johnson et al., 1990) or dis-
crepancy criteria (Fang & Mukerjee, 2000). However, for a high-dimensional input space, it is more
fruitful to consider designs that are space-filling in lower-dimensional projections. Latin hypercube designs
(McKay et al., 1979), designs based on orthogonal arrays (Owen, 1992; Tang, 1993) and strong orthogonal
arrays (He & Tang, 2013) are a sequence of steps that aim at low-dimensional space-filling. The present
work, in our opinion, represents another direction in the quest for even better designs that are space-filling
in lower dimensions.

The notion of near orthogonality conceived in this paper is very different from the traditional formula-
tion in the literature on nearly orthogonal arrays. The traditional formulation is combinatorial in nature and
does not involve symbol collapsing; see Xu (2002) for a detailed discussion and further references. Inci-
dentally, the idea of symbol collapsing appears also in Qian & Wu (2009). However, their objectives and
results are different from ours; for instance, their arrays are fully orthogonal even before symbol collapsing
and thus accommodate fewer factors than those explored here.

2. DEFINITIONS AND PRELIMINARIES

Two N × 1 column vectors a1 and a2, populated by s1 and s2 symbols, respectively, are said to be
orthogonal if all s1s2 ordered pairs of symbols occur equally often as rows in the N × 2 array (a1 a2).
An orthogonal array OA(N ;∏m

j=1 s j ) of strength two is an N × m array, with its m columns populated
by s1, . . . , sm symbols, such that every two distinct columns are orthogonal. In the symmetric case where
s j = s for each j , an OA(N ;∏m

j=1 s j ) is denoted simply by OA(N ; sm). Similar simplified notation will be
used if the s j are equal in clusters.

DEFINITION 1. A mappable nearly orthogonal array MNOA(R;∏m
j=1 s

u j

j ,
∏m

j=1

∏u j

k=1 p jk) is an R × ũ
array whose ũ = u1 + · · · + um columns can be partitioned into m disjoint groups of u1, . . . , um columns
with the following properties:

(i) for j = 1, . . . , m, every column of the j th group is populated by s j symbols;
(ii) any two columns from different groups are orthogonal;

(iii) for j = 1, . . . , m and k = 1, . . . , u j , the s j symbols in the kth column of the j th group can be mapped
to a set of p jk � s j symbols such that these mappings convert the array into an orthogonal array
OA(R;∏m

j=1

∏u j

k=1 p jk).

In particular, if s j = s, u j = u and p jk = p for every j and k, then a mappable nearly orthogonal array
as in Definition 1 will be denoted by MNOA{R; (su)m, (pu)m}. Similar simplified and self-evident notation
will be used also when the s j , u j or p jk are equal in clusters.

By Definition 1(ii), in a mappable nearly orthogonal array before mapping, each of the u j columns in
the j th group is orthogonal to at least a proportion π j = (ũ − u j )/(ũ − 1) of the other columns. This leads
to the following measures of the pre-mapping degree of orthogonality among the columns:

π̄ =
m∑

j=1

u jπ j

/ m∑
j=1

u j =
⎛
⎝ũ2 −

m∑
j=1

u2
j

⎞
⎠ /

{ũ(ũ − 1)} (1)

and

πmin = min
1� j�m

π j =
(

ũ − max
1� j�m

u j

)/
(ũ − 1). (2)
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Miscellanea 959

Table 1. Pre-mapping and post-mapping MNOA{16; (43)5, (23)5}
Pre-mapping Post-mapping

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 2 2 1 2 2 1 2 2 1 2 2 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1
0 0 0 2 1 3 2 1 3 2 1 3 2 1 3 0 0 0 1 0 1 1 0 1 1 0 1 1 0 1
0 0 0 3 3 1 3 3 1 3 3 1 3 3 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0
1 2 2 0 0 0 1 2 2 2 1 3 3 3 1 0 1 1 0 0 0 0 1 1 1 0 1 1 1 0
1 2 2 1 2 2 0 0 0 3 3 1 2 1 3 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1
1 2 2 2 1 3 3 3 1 0 0 0 1 2 2 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1
1 2 2 3 3 1 2 1 3 1 2 2 0 0 0 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0
2 1 3 0 0 0 2 1 3 3 3 1 1 2 2 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1
2 1 3 1 2 2 3 3 1 2 1 3 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0 0 0
2 1 3 2 1 3 0 0 0 1 2 2 3 3 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 0
2 1 3 3 3 1 1 2 2 0 0 0 2 1 3 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1
3 3 1 0 0 0 3 3 1 1 2 2 2 1 3 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1
3 3 1 1 2 2 2 1 3 0 0 0 3 3 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0
3 3 1 2 1 3 1 2 2 3 3 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0
3 3 1 3 3 1 0 0 0 2 1 3 1 2 2 1 1 0 1 1 0 0 0 0 1 0 1 0 1 1

In particular, if u1 = · · · = um = u, then ũ = mu and by (1) and (2) we have

π̄ = πmin = (m − 1)u/(mu − 1). (3)

Example 1. In Table 1, the array on the left is a pre-mapping MNOA{16; (43)5, (23)5}, where each of the
15 columns is populated by four symbols. If we partition these columns into five disjoint groups of three
columns each such that the first group consists of the first three columns, the second group consists of the
next three columns, and so on, then any two distinct columns are orthogonal if and only if they are from
different groups. Thus, with m = 5 and u = 3 in (3), we obtain the pre-mapping degree of orthogonality as
π̄ = πmin = 12/14 = 6/7. Now suppose that the four symbols in each column are mapped to two symbols
by 0, 1 → 0 and 2, 3 → 1. Then the resulting array is seen to be a two-symbol orthogonal array, which
is the array displayed on the right in Table 1. In this example, the same mapping works for all columns,
because they all have four symbols and are mapped to two-symbol columns. As will be seen later, this is
not the case in general.

3. METHOD OF CONSTRUCTION

Resolvable orthogonal arrays will be very useful in constructing mappable nearly orthogonal arrays.
An OA(N ;∏m

j=1 s j ), say C , is resolvable into λ parts if it can be partitioned as C = (CT
1, . . . , CT

λ)
T such

that each subarray Cw is (N/λ) × m and forms an orthogonal array of strength one, i.e., in each Cw the
s j symbols occur equally often in the j th column, for j = 1, . . . , m. Here the superscript T stands for
transpose. We write OAλ(N ;∏m

j=1 s j ) for such a resolvable orthogonal array. An OAλ(N ;∏m
j=1 s j ) is co-

existent with an OA(N ; λ × ∏m
j=1 s j ), which can be easily seen as follows. The former can be obtained

from the latter simply by forming the λ subarrays according to the λ symbols in the first column of the
latter and then deleting this first column. Conversely, from an OAλ(N ;∏m

j=1 s j ), C = (CT
1, . . . , CT

λ)
T, one

can construct an OA(N ; λ × ∏m
j=1 s j ) by adding one column to C in such a way that the entries of this

new column that correspond to Cw are equal to w − 1 for w = 1, . . . , λ. Incidentally, our construction,
described in Theorem 1 below, also covers the trivial case of λ = 1, where no partitioning into subarrays
takes place at all.

THEOREM 1. Suppose that there exist an OA(N ;∏m
j=1 s j ), say B, and resolvable arrays

OAλ(λs j ;
∏u j

k=1 p jk), say C ( j) ( j = 1, . . . , m). Then an MNOA(λN ;∏m
j=1 s

u j

j ,
∏m

j=1

∏u j

k=1 p jk) can
be constructed.

Proof. We first describe the construction via several steps and then show its validity.
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960 R. MUKERJEE, F. SUN AND B. TANG

Step 1. For j = 1, . . . , m and k = 1, . . . , u j , let C ( j) have symbols 0, 1, . . . , p jk − 1 in the kth column.
Write C ( j)

w (w = 1, . . . , λ) for the subarrays of C ( j) such that each C ( j)
w is s j × u j and forms an orthogonal

array of strength one. Then s j = t jk p jk for some integer t jk . For each fixed j and k, consider a partitioning
of the set {0, 1, . . . , s j − 1} into p jk mutually exclusive and exhaustive subsets each of cardinality t jk , as
given by

Sjkh = {ht jk, ht jk + 1, . . . , ht jk + t jk − 1}, h = 0, . . . , p jk − 1. (4)

Step 2. For each j, w, k and h, in the kth column of C ( j)
w replace the s j/p jk = t jk occurrences of the

symbol h by the t jk members of Sjkh as per the order in (4); that is, the first occurrence of h is replaced by
ht jk , the second occurrence by ht jk + 1, and so on. Let D( j)

w be the s j × u j array obtained from C ( j)
w in this

manner. Each column of D( j)
w is a permutation of 0, 1, . . . , s j − 1. Let d( j)

w (0), d( j)
w (1), . . . , d( j)

w (s j − 1)

denote the s j rows of D( j)
w .

Step 3. Turning now to the orthogonal array B, write B = (bi j ) and let 0, 1, . . . , s j − 1 be the sym-
bols in its j th column, so that bi j ∈ {0, 1, . . . , s j − 1} for i = 1, . . . , N and j = 1, . . . , m. Construct the
following arrays:

(a) A( j)
w , of order N × u j , having rows d( j)

w (b1 j ), d( j)
w (b2 j ), . . . , d( j)

w (bN j ), for j = 1, . . . , m and
w = 1, . . . , λ;

(b) A( j) = (A( j)T

1 , . . . , A( j)T

λ )T, of order λN × u j , for j = 1, . . . , m;

(c) A = (A(1), . . . , A(m)), of order λN × ũ, where ũ = u1 + · · · + um .

We now show that the array A constructed as above is the desired mappable nearly orthogonal array.
Partition the columns of A into m disjoint groups, such that the j th group consists of the u j columns of A( j)

( j = 1, . . . , m). In conformity with Definition 1(i), by Step 2 and Step 3(a) and (b), each column in the j th
group is populated by s j symbols 0, 1, . . . , s j − 1. Next, for each j and w, by Step 2 and Step 3(a), every
column of A( j)

w is obtained by permuting the symbols of the j th column of B. Since B is an orthogonal
array, it follows that for every w and j1 |= j2, each column of A( j1)

w is orthogonal to each column of A( j2)
w , i.e.,

by Step 3(b), any two columns of A from different groups are orthogonal, as stipulated in Definition 1(ii).
Finally, for j = 1, . . . , m and k = 1, . . . , u j , consider the kth column of the j th group and map the s j

symbols in this column to p jk symbols as dictated by (4), i.e.,

ht jk, ht jk + 1, . . . , ht jk + t jk − 1 → h, h = 0, . . . , p jk − 1.

By Step 2, these mappings revert D( j)
w to C ( j)

w and hence, by Step 3(a), convert A( j)
w to an N × u j array

whose rows are given by those of C ( j)
w , each repeated N/s j times. By Step 3(b), this in turn converts A( j)

to a λN × u j array whose rows are given by those of C ( j), each repeated N/s j times. Since each C ( j)

is an orthogonal array, it follows that, post-mapping, any two distinct columns of A( j) are orthogonal.
Furthermore, as already noted, any two columns of A from different groups, A( j1) and A( j2) for j1 |= j2,
are orthogonal pre-mapping and hence remain orthogonal post-mapping. Therefore, in conformity with
Definition 1(iii), post-mapping, A is an OA(λN ;∏m

j=1

∏u j

k=1 p jk). �
Remark 1. As with ordinary orthogonal arrays, if λ > 1 and the array A constructed in Theorem 1 is

augmented by a column

ξ = (0, . . . , 0, 1, . . . , 1, . . . , λ − 1, . . . , λ − 1)T

where each symbol 0, 1, . . . , λ − 1 is repeated N times, then this additional λ-symbol column is orthogonal
to each column of A pre-mapping and, therefore, post-mapping.

Remark 2. For λ = 1, if B and C ( j) ( j = 1, . . . , m) are saturated orthogonal arrays, then, post-mapping,
A is a saturated orthogonal array. For λ > 1, if B and the arrays OA(λs j ; λ × ∏u j

k=1 p jk), which are co-
existent with C ( j) ( j = 1, . . . , m), are saturated, then, post-mapping, the array A when augmented by ξ is
a saturated orthogonal array.

Various existence and construction results for the arrays in Theorem 1(i) and (ii) are available in Hedayat
et al. (1999). Some of these results will be used in the next section when we discuss applications of
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Miscellanea 961

Table 2. Some mappable nearly orthogonal arrays of Series 1–4

Series p α Array π̄ πmin

1 2 2 MNOA{16; (43)5, (23)5} 0·8571 0·8571
1 2 3 MNOA{64; (87)9, (27)9} 0·9032 0·9032
1 2 4 MNOA{256; (1615)17, (215)17} 0·9449 0·9449
1 3 2 MNOA{81; (94)10, (34)10} 0·9231 0·9231
1 4 2 MNOA{256; (165)17, (45)17} 0·9524 0·9524
2 2 2 MNOA{32; (46)5, (26)5} 0·8276 0·8276
2 2 3 MNOA{128; (814)9, (214)9} 0·8960 0·8960
2 2 4 MNOA{512; (1630)17, (230)17} 0·9430 0·9430
2 3 2 MNOA{243; (912)10, (312)10} 0·9076 0·9076
2 4 2 MNOA{1024; (1620)17, (420)17} 0·9440 0·9440
3 2 3 MNOA{128; (86)9, (22 × 44)9} 0·9057 0·9057
3 2 4 MNOA{1024; (1612)17, (24 × 88)17} 0·9458 0·9458
4 2 3 MNOA{64; (86) × (44)8, (22 × 44) × (4 × 23)8} 0·9104 0·8649
4 2 4 MNOA{512; (1612) × (88)16, (24 × 88) × (8 × 47)16} 0·9472 0·9209
4 3 3 MNOA{729; (2712) × (99)27, (33 × 99) × (9 × 38)27} 0·9679 0·9567

Theorem 1. We conclude this section by noting that our method of constructing mappable nearly orthog-
onal arrays is different from, though similar in spirit to, the substitution method of Liu & Cai (2009) for
constructing mixed-level supersaturated designs.

4. APPLICATIONS

For illustration, we now use Theorem 1 to obtain four series of mappable nearly orthogonal arrays.
Table 2 summarizes some of the arrays in these series. Many other series can be found similarly from
Theorem 1.

Series 1. Let p be a prime or prime power and let s = pα , where α � 2 is an integer. In Theorem 1, if one
takes B as an OA(s2; ss+1) and, with λ = 1, each C ( j) as an OA(pα; p f1) where f1 = (pα − 1)/(p − 1), then
one obtains a symmetric MNOA{s2; (s f1)s+1, (p f1)s+1}. The case of p = α = 2 yields the mappable nearly
orthogonal array in Example 1. By (3), the pre-mapping degree of orthogonality of this array is given by
π̄ = πmin = s f1/{(s + 1) f1 − 1}.

Series 2. Let p, s and α be as in Series 1. In Theorem 1, if one takes B as an OA(s2; ss+1) and, with
λ = p, each C ( j) as an OA p(pα+1; p f2) where f2 = (pα+1 − 1)/(p − 1) − 1, then one obtains a symmet-
ric MNOA{ps2; (s f2)s+1, (p f2)s+1}. By (3), for this array, π̄ = πmin = s f2/{(s + 1) f2 − 1}. The resolvable
arrays C ( j) considered here can easily be obtained from a saturated OA(pα+1; p f2+1) as indicated at the
beginning of § 3.

Series 3. Let p and s = pα be as in Series 1, now with α � 3. Write c = pα−1 and g = pα−2. Using a
difference scheme as discussed in Theorem 6.6 of Hedayat et al. (1999), one can then find an OA(c; g ×
pg), say L1, with c rows and g + 1 columns of which the first is populated by g symbols and the rest with p
symbols each. Next, consider a symmetric OA(c2; cc+1), and in its first column replace the c symbols by the
c rows of L1 to get an OA(c2; g × pg × cc). This in turn yields a resolvable OAλ(c2; pg × cc), say L2, where
λ = g. Now, in Theorem 1, take B to be an OA(s2; ss+1) and each C ( j) to be the resolvable array L2. This is
feasible as c2 = λs, and yields an MNOA{gs2; (sg+c)s+1, (pg × cc)s+1} which has (g + c)(s + 1) columns
such that: (a) pre-mapping, each column is populated by s symbols and the columns are partitioned into s +
1 groups of g + c columns each, as envisaged in Definition 1; (b) post-mapping, of the g + c columns in
each group, g convert to p-symbol columns and c convert to c-symbol columns, so that the array becomes
an orthogonal array of strength two. By (3), for this array, π̄ = πmin = s(g + c)/{(s + 1)(g + c) − 1}.

Series 4. Let p, s, c, g, α and the resolvable OAλ(c2; pg × cc), called L2, be as in Series 3, where λ = g.
As before, using difference schemes, one can also find an OA(sc; s × cs), say L0, and an OA(cg; c × gc)

that yields a resolvable OAλ(cg; c × gc−1), say L3, where λ = g. In Theorem 1, take B to be L0, C (1) to
be the resolvable array L2, and each of the other C ( j) to be the resolvable array L3. This is feasible as
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962 R. MUKERJEE, F. SUN AND B. TANG

Table 3. Some mappable nearly orthogonal arrays not covered by Series 1–4
B λ C( j) for every j Mappable nearly orthogonal array π̄ = πmin

OA(16; 45) 6 OA6(24; 214) MNOA{96; (414)5, (214)5} 0·8116
OA(81; 910) 2 OA2(18; 37) MNOA{162; (97)10, (37)10} 0·9130
OA(64; 89) 3 OA3(24; 216) MNOA{192; (816)9, (216)9} 0·8951
OA(81; 910) 4 OA4(36; 313) MNOA{324; (913)10, (313)10} 0·9070
OA(64; 89) 6 OA6(48; 22 × 412) MNOA{384; (814)9, (22 × 412)9} 0·8960
OA(144; 127) 3 OA3(36; 36 × 63) MNOA{432; (129)7, (36 × 63)7} 0·8710

c2 = λs and cg = λc, and yields an MNOA{gsc; (sg+c) × (cc)s, (pg × cc) × (c × gc−1)s} which involves
s + 1 groups of columns, with g + c columns in the first group and c columns in each of the other groups.
Hence, by (1) and (2),

π̄ = sc(2g + c + sc)

(g + c + sc)(g + c + sc − 1)
, πmin = sc

g + c + sc − 1
.

Here, one column from each of the last s groups has c symbols both pre- and post-mapping. However, one
can check that it is orthogonal to the other columns of the same group only post-mapping.

Remark 3. As observed in Remark 1, mappable nearly orthogonal arrays of Series 2, 3 and 4 can be
augmented by a λ-symbol column, with λ = p, g and g, respectively, retaining orthogonality both pre- and
post-mapping. Also, following Remark 2, one can check that, post-mapping, mappable nearly orthogonal
arrays of Series 1 are saturated. Furthermore, the same holds for mappable nearly orthogonal arrays of
Series 2–4 upon augmentation by a λ-symbol column as indicated above.

For mappable nearly orthogonal arrays of Series 1–4, the numbers of rows and the numbers of symbols
in all columns, both pre- and post-mapping, are primes or prime powers. There are many other applications
of Theorem 1 where this is not the case. Some such applications are indicated in Table 3. These arrays are,
however, not saturated post-mapping, even upon augmentation by a λ-symbol column, because the relevant
conditions in Remark 2 do not hold.

Remark 4. In any specific situation, if necessary, one or more columns of a mappable nearly orthogonal
array can be deleted to get another mappable nearly orthogonal array with the same number of rows but
fewer columns. The expressions for π̄ and πmin in (1) and (2) suggest that while doing so, one should
attempt to keep the group sizes as close to equal as possible without reducing the number of groups. For
instance, in order to obtain a mappable nearly orthogonal array with 81 rows and 28 columns each having
9 symbols pre-mapping, one can start with the MNOA{81; (94)10, (34)10} in Table 2, and delete two columns
from each of the first two groups and one column from each of the last eight groups. By (1) and (2), the
resulting MNOA{81; (92)2 × (93)8, (32)2 × (33)8} has π̄ = 0·9312 and πmin = 0·9259. On the other hand,
starting from the same MNOA{81; (94)10, (34)10}, if one deletes the last three groups of columns altogether,
then the resulting MNOA{81; (94)7, (34)7}, also with 28 columns, has lower values of π̄ and πmin, namely
π̄ = πmin = 0·8889, because of a reduction in the number of groups.

5. CONCLUDING REMARKS

The research presented in this paper opens up several possible directions for future work. One natural
direction is to construct the higher-strength versions of mappable nearly orthogonal arrays. In a recent
paper, He & Tang (2013) introduced strong orthogonal arrays for computer experiments. It would be inter-
esting to explore whether or not a marriage between these and mappable nearly orthogonal arrays could
produce even better designs, if such a marriage is indeed possible.

The arrays constructed in this paper are intended to achieve better low-dimensional space-filling prop-
erties as compared with their post-mapping counterparts. As has been mentioned in § 1, one may want to
further evaluate mappable nearly orthogonal arrays using distance or discrepancy criteria. Starting with
a given mappable nearly orthogonal array, one can generate a class of arrays by permuting its levels in
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Miscellanea 963

each column, and the resulting arrays will still be mappable nearly orthogonal arrays provided level per-
mutations do not damage the property of being an orthogonal array post-mapping. For example, in the
MNOA{16; (43)5, (23)5} in Table 1, if we replace the four levels 0, 1, 2 and 3 in the first column by 1, 0, 3
and 2, respectively, the resulting array is still an MNOA{16; (43)5, (23)5}. A practically important problem
would be to select better arrays from the class of all such mappable nearly orthogonal arrays using a dis-
tance or discrepancy criterion. This is in the same spirit as finding maximin Latin hypercubes (Morris &
Mitchell, 1995) and optimal orthogonal-array-based Latin hypercubes (Leary et al., 2003).

Pre-mapping, mappable nearly orthogonal arrays can be viewed directly as multilevel supersaturated
designs. Constructions and the optimality of such designs have been considered by many authors, includ-
ing Xu & Wu (2005) and Liu & Cai (2009). One commonly used optimality criterion for multilevel super-
saturated designs is that of E( fNOD) (Fang et al., 2003). The study of mappable nearly orthogonal arrays
from this perspective will at least be of theoretical importance. Designs for computer experiments with
two levels of accuracy have been gaining in popularity recently (Qian et al., 2009). It would be interesting
to study whether and how the ideas of mappable nearly orthogonal arrays might be useful for this purpose.
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